Telegram Group & Telegram Channel
Как может переобучиться SVM?

Идея метода опорных векторов (support vector machine, SVM) заключается в построении гиперплоскости, разделяющей объекты выборки оптимальным способом. Модель строится в предположении, что чем больше расстояние (зазор) между разделяющей гиперплоскостью и объектами разделяемых классов, тем меньше будет средняя ошибка классификатора.

В SVM, как и в других алгоритмах машинного обучения, переобучение возникает, когда модель становится слишком сложной и начинает заучивать шум или случайные особенности обучающего набора данных, вместо того чтобы извлекать общие закономерности.

В нелинейных случаях в методе опорных векторов используется ядерный трюк, который позволяет ему работать в пространстве более высокой размерности без необходимости явного отображения данных. Некоторая функция ядра заменяет скалярное произведение. Здесь переобучение может возникнуть, если выбрано слишком сложное ядро или параметры ядра не оптимальны, что позволяет модели захватывать шум и нерелевантные особенности данных.

Кроме того, в SVM может использоваться параметр регуляризации, который контролирует компромисс между максимизацией ширины зазора и минимизацией ошибки классификации. Если параметр слишком велик, модель стремится уменьшить ошибки классификации, что может привести к переобучению.

#машинное_обучение



tg-me.com/ds_interview_lib/197
Create:
Last Update:

Как может переобучиться SVM?

Идея метода опорных векторов (support vector machine, SVM) заключается в построении гиперплоскости, разделяющей объекты выборки оптимальным способом. Модель строится в предположении, что чем больше расстояние (зазор) между разделяющей гиперплоскостью и объектами разделяемых классов, тем меньше будет средняя ошибка классификатора.

В SVM, как и в других алгоритмах машинного обучения, переобучение возникает, когда модель становится слишком сложной и начинает заучивать шум или случайные особенности обучающего набора данных, вместо того чтобы извлекать общие закономерности.

В нелинейных случаях в методе опорных векторов используется ядерный трюк, который позволяет ему работать в пространстве более высокой размерности без необходимости явного отображения данных. Некоторая функция ядра заменяет скалярное произведение. Здесь переобучение может возникнуть, если выбрано слишком сложное ядро или параметры ядра не оптимальны, что позволяет модели захватывать шум и нерелевантные особенности данных.

Кроме того, в SVM может использоваться параметр регуляризации, который контролирует компромисс между максимизацией ширины зазора и минимизацией ошибки классификации. Если параметр слишком велик, модель стремится уменьшить ошибки классификации, что может привести к переобучению.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/197

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека собеса по Data Science | вопросы с собеседований from kr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA